Brief Reports

ARTHUR E. BAILEY,¹ R. OWEN ASPLUND*

Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071

and M.S. ALI

AMC Cancer Research Center, Lakewood, Colorado 80214

A report by Kupchan *et al.* (1) of antitumor activity in the leaves of *Acer negundo* L. prompted the testing of *Acer saccharinum* L. (Aceraceae) for antitumor activity. An EtOH/H₂O extract of the leaves of this plant inhibited B16 melanoma in mice, and isolation of the active material was carried out. The separation yielded methyl gallate (methyl-3,4,5-trihydroxy benzoate) as the active compound. Methyl gallate was tested against B16 melanoma in mice following standard protocols (2) yielding T/C values of 188% and 172% at 25 mg/kg, and testing against tumor cells in culture, again following standard protocols (2), gave the following results: B16 melanoma ID₅₀ 4.0×10^{-5} M, L1210 ID₅₀ 2.2×10^{-5} M, and P388 ID₅₀ 2.8×10^{-5} M. Finally, the compound was tested for inhibition of reverse transcriptase using the assay detailed by Kacian and Spiegelman (4) and was found to be inhibitory with an I₅₀ of 4.80×10^{-3} M.

Methyl gallate occurs widely in the Aceraceae as well as other plant families. It has previously been reported to inhibit L1210 leukemia in vivo (3). Investigators should be aware that antitumor activity detected in random screening of plants may be due to this compound. The inhibition of reverse transcriptase by this compound is an observation that has not previously been reported. This is also the first report of its cytotoxicity.

EXPERIMENTAL

ISOLATION.—Green leaves of A. saccharinum were collected in the area around Lakewood, Colorado. A voucher specimen is on file at the American Medical Center, Lakewood, Colorado (identified by date, 8/23/79, and collector, G.C. Sharma). Leaves (40 kg) were ground, extracted with MeOH-H₂O (1:1), and filtered. The filtrate was dried, taken up in H₂O, and extracted with CHCl₃ and BuOH. The BuOH phase was dried and separated by two preparative tlc steps in succession (developed in EtOAc-MeCOEt-HOAc, 5:3:1 and toluene-EtOAc-HOAc, 5:4:1 both on Si gel GF). In each case the most rapidly moving brown band was isolated. The material thus obtained was crystallized three times from H₂O and dried. The isolate was identified as methyl gallate by comparison of its physical (mp, co-tlc, combustion analysis) and spectral properties (ir, ¹H nmr, ¹³C nmr) with those of an authentic sample.

ASSAYS.—The in vivo testing was performed on 6 mice per group using 5-fluorouracil as a positive control (T/C 145 and 141%).

The ID₅₀ values for the cytotoxicity determination in L1210, B16, and P-388, represent the concentrations of the compound required to reduce cell growth to one-half that of the control. The compound was tested on normal human fibroid cells at 10^{-3} M and was found to have no effect.

Reverse transcriptase activity was assayed in a 100 μ l total volume solution containing 50 mM Tris buffer (pH 8.1), 9 mM MgCl₂, 40 mM KCl, 2 mM DTT, and 0.01% BSA. Enzyme (0.9 units per assay, Seikagaku America, Inc.), primer template [poly (rA)^{-p(dT)} 12-18, PL Biochemicals, 0.01 A₂₆₀/assay], and inhibitor (as needed) were added to the assay tube, and it was incubated for 30 min at 37°. At that time 20 nmol (Methyl ³H) TTP (125 cpm-pmol) was added, and the reaction was incubated for an additional 30 min at 37°. Contents of the tube were placed on a DEAE cellulose pad. The pad was washed thoroughly with H₂O and 0.5 M Na₂HPO₄, dried, and counted by liquid scintillation. The number of counts is proportional to the enzyme activity and the strength of the inhibitor is related to the amount of reduction as compared to the control. The inhibitor effect is expressed as I₅₀ which is the concentration of the inhibitor that will reduce control activity by 50 per cent.

Full details of experimental procedures are available upon request from the senior author.

ACKNOWLEDGMENTS

This work was part of a Ph.D. dissertation at the University of Wyoming for AEB. We would like to thank Dr. Roland Robbins of Brigham Young University, Provo, Utah, for conducting the tissue culture testing. We also gratefully acknowledge financial support from the Fraternal Order of Eagles and the Order of the Eastern Star.

¹Current Address: Cooper Biomedical Inc., Westchester, Pennsylvania 19380.

LITERATURE CITED

- 1. S.M. Kupchan, R.J. Hemingway, J.R. Knox, S.J. Barboutis, D. Werner, and M. Barboutis, J. Pharm. Sci., 56, 603 (1967).
- R. Geran, N. Greenberg, M. Macdonald, A. Schumacher, and B. Abbott, *Cancer Chemother. Rep.*, Part 3, No. 2, 1 (1972).
- 3. H.L. Elford, G.L. Wamper, and B. van Riet, Cancer Res., 39, 844 (1979).
- 4. D. Kacian and S. Spiegelman, "Methods in Enzymology," vol. 29, Part E. Academic Press, New York, 1974, p. 150.

Received 11 February 1986

CONSTITUENTS OF GUETTARDA PLATYPODA

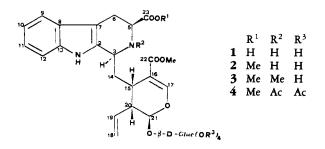
F. Ferrari,* I. Messana, B. Botta,

Centro Chimica dei Recettori e delle Molecole Biologicamente Attive, Istituto di Chimica, Università Cattolica del S. Cuore, Largo Francesco Vito 1, 00168 Roma, Italy

and J.F. DE MELLO

Instituto dos Antibioticos, Universidade Federal de Pernambuco, 50000 Recife, Brazil

Chemical examination of the roots of *Guettarda platypoda* DC. (Rubiaceae), a plant used in traditional medicine as a febrifuge, gave quinovic acid, 3-(0-fucosyl)-quinovic acid, morroniside, sweroside, and 5 α -carboxystrictosidine. From the same plant Bhattacharyya *et al.* (1) isolated quinovic acid, rotundic acid, β -sitosterol, and a saponin.


EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—¹H-nmr spectra were recorded on a Varian EM 360 and ¹³C-nmr spectra on a Bruker AM 400 spectrometers (TMS as internal reference); ms on an AEI MS 902 instrument, 70 eV; tlc and cc: Kieselgel 60 (Merck).

PLANT MATERIAL.—Roots of *G. platypoda* were collected near Itamaraca (Recife, Brazil) in March 1982. A voucher specimen of the plant (no. 5341), identified by Alda Chiappeta, is deposited at the Herbarium of the Instituto dos Antibioticos, Universidade Federal de Pernambuco, Recife, Brazil.

ISOLATION AND IDENTIFICATION.—The roots of *G. platypoda* (0.5 kg) were extracted three times with MeOH at room temperature (25 g). By means of cc of a fraction of the residue (14 g) eluting with CHCl₃-MeOH (95:5), we obtained quinovic acid (150 mg) and 3-(0-fucosyl)-quinovic acid (350 mg) which were identified by direct comparison (¹H nmr, ms, mp) with authentic samples and literature data (2). Elution with CHCl₃-MeOH (90:10) yielded a mixture of two iridoids, which were re-chromatographed using H₂O-saturated *n*-BuOH to give morroniside (190 mg) and sweroside (130 mg). The ¹³C- and ¹H-nmr spectra of morroniside and sweroside were identical with those previously reported (3,4).

Eluting with CHCl₃-MeOH (80:20) a basic fraction was obtained (300 mg), which was further purified using reversed-phase chromatography (Lichroprep RP-8, H₂O-MeOH, 1:1) to give compound 1 [mp 225°, with dec; { α }²⁰D= - 261 (c 1.1, MeOH]. ¹H- and ¹³C-nmr data, in comparison with those reported for analogous compounds (5), suggested for 1 the structure of a tetrahydrodesoxycordifoline.

